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Purpose. The overall aim of the present study was to investigate
retrospectively the feasibility and utility of model-based clinical trial
simulation as applied to the clinical development of naratriptan with
effect measured on a categorical scale.

Methods. A PK-PD model for naratriptan was developed by using
information gathered from previous naratriptan and sumatriptan pre-
clinical and clinical trials. The phase Ila naratriptan data were used to
check the PK-PD model in its ability to describe future data. A fur-
ther PK-PD model was developed by using the phase Ila naratriptan
data, and a phase IIb trial was designed by simulation with the use of
Matlab. The design resulting from clinical trial simulation was com-
pared with that derived by using D-optimal design.

Results. The PK-PD model showed reasonable agreement with the
data observed in the phase Ila naratriptan clinical trial. Clinical trial
simulation resulted in a design with four or five arms at 0 mg, 2.5
and/or 5 mg, 10 mg, and 20 mg, PD measurements to be taken at 0,
2, and 4 or 6 h and at least 150 patients per arm. A sub-D-optimal
design resulted in two dosing arms at 0 and 10 mg and PD measure-
ments to be taken at 1 and 2 h.

Conclusions. Clinical trial simulation is a useful tool for the quanti-
tative assessment of the influence of the controllable factors and is
the only tool for the quantitative assessment of the uncontrollable
factors on the power of a clinical trial.

KEY WORDS: simulation; design; clinical trials; naratriptan; phar-
macokinetics; pharmacodynamics.

INTRODUCTION

There is growing pressure from both within and outside
the pharmaceutical industry to improve the efficiency of the
clinical phases of drug development. In one report from the
Food and Drug Administration (FDA) (1) for 12 NDAs
evaluated in 1994-1995, the median number of clinical trials
per NDA was 68, of which 27 were efficacy trials. A substan-
tial fraction of the trials in these NDAs were adjudged by the
FDA or the drug’s sponsor to be seriously flawed or failed on
scientific or performance grounds.
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By analogy with large engineering projects, simulations
can be used in situations in which the actual system or process
is expensive or involves questions of safety and/or practices
prescribed by law or regulatory bodies. Experiments per-
formed on the simulation model can often provide valuable
insights for the real system. There is recent and growing in-
terest in using computer simulation of clinical trials to im-
prove clinical trial design (2). Simulating clinical trials, apply-
ing techniques commonly used in other technology-based in-
dustries, such as the aerospace industry, can allow clinical trial
designers to thoroughly test their designs and analyze the
simulated results before actually conducting a clinical trial.
Such careful scrutiny of a design can help expose weaknesses
and identify reliance on assumptions in a plan. The result is
that trials can be evaluated for robustness under various sce-
narios. The choices made by using this process should im-
prove the chances of successful trials and of obtaining the
necessary information for the product label.

Biologic systems are subject to many sources of variabil-
ity. Consequently, clinical trial simulation involves Monte
Carlo procedures addressing the typical behavior of the sys-
tem and the departures from it. A recent joint report of two
scientific conferences, organized by FDA, EUFEPS (Euro-
pean Federation for Pharmaceutical Sciences), ASCPT
(American Society for Clinical Pharmacology and Therapeu-
tics), AAPS (American Association of Pharmaceutical Scien-
tists), and ACCP (American College of Clinical Pharmacy)
(3), states that computer-assisted clinical trial modeling and
simulation has achieved a sound conceptual basis by using
formal pharmacokinetic and pharmacodynamic modeling
principles, now that capable software has become available. It
is our opinion, however, that more systematic research is
needed both in the generic and methodologic issues, and the
practical applications of clinical trial simulation and design, to
gain evidence of the feasibility and utility of this approach.

It is recognized (4,5) that a clinical trial simulation and
design (CTS&D) exercise is based on three major compo-
nents: (i) a set of models, (ii) a clinical trial protocol, and (iii)
adequate resources. Therefore, because simulation is a natu-
ral progression from the increased use of mathematical mod-
els (4) and the results can be no better than the models used,
the modeling issues should be at the center of every generic
research activity in CTS&D methodology. A class of models
of special recent interest, commonly used in anesthesia and
analgesia, have binary or categoric responses (6-9), where a
number of methodologic issues, e.g., for optimal experimental
design, remain to be addressed.

Early phase (I and II) clinical trials have been increas-
ingly viewed as the most critical point at which to make as-
sessments of the therapeutic effectiveness of a new drug and
decide whether to proceed with large investments of time,
money, and resources (1,2). There are a number of research
questions, related to such trials, that still need to be answered
(1,10-13). One of those, referring to parallel trials, is the ra-
tional or optimal selection of dosing regimens and sampling
schedules.

Naratriptan is a novel SHT,y,;» agonist for the acute
treatment of migraine. It has been developed for oral treat-
ment and followed the development of the “first-in-line” trip-
tan-sumatriptan (14,15). The overall aim of the present study
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was to investigate the feasibility and utility of model-based
CTS&D for the phase II development of naratriptan with
effect measured on a categorical scale. The research was per-
formed retrospectively and was not used to influence the de-
velopment of naratriptan. Consequently, this research was
used as a vehicle to explore various aspects of CTS&D. The
work undertaken involved two separate projects. In the first
project we had naratriptan pharmacokinetic data from a
phase I clinical trial and sumatriptan pharmacodynamic data,
together with preclinical data comparing the potency of
naratriptan and sumatriptan. We used this information to de-
velop a pharmacokinetic-pharmacodynamic model for
naratriptan and applied this model to design a phase Ila study
for naratriptan, with constraints set by logistics and regula-
tion, with the principal objective of defining the dose/
concentration-response relationship in an optimal fashion.
The results of these simulations were compared with the ac-
tual phase ITa study that was performed. In the second project
we used the phase Ila data to refine the naratriptan pharma-
cokinetic-pharmacodynamic model and used this model to
explore some issues pertinent to the design of a phase IIb
study. Principally, we investigated the application of optimal
design methodology to the design of a pharmacodynamic
study involving a categorical response variable. In particular,
we evaluated the resources in terms of time, software, and
experience needed to perform the CTS&D exercise. The cur-
rent document is a detailed account of our experiences with
CTS&D.

MATERIALS AND METHODS

Naratriptan and Sumatriptan Data

Pharmacodynamic models were based on the clinical end
point of naratriptan, migraine pain relief/severity. Pain relief
was measured on a five-point ordered categorical scale de-
fined as follows: 0 = no pain relief, 1 = mild pain relief, 2 =
moderate pain relief, 3 = considerable pain relief, and 4 =
total pain relief. Pain severity was measured on a four-point
ordinal scale with 0 = no pain, 1 = mild pain, 2 = moderate
pain, and 3 = severe pain. Regulatory requirements define a
measure of “success” of a drug as the ability to reduce pain
severity or increase pain relief at 2 h “significantly.” For pain
severity, a success is a reduction from categories 3 or 2to 1 or
0, and for pain relief, it is an increase from categories 0, 1, or
2 to 3 or 4. The simulations were based on dichotomizing the
categorical responses into pain relief (success) and no pain
relief (failure).

Information available for the analysis included preclini-
cal and clinical data accumulated by Glaxo Wellcome up to
1993. The phase I studies included intravenous, subcutaneous,
and oral (solution) routes of administration from a total of 26
healthy male volunteers. The phase Ila naratriptan data made
available consisted of placebo or subcutaneous administration
to about 400 patients (mostly female), including 33 patients
on active treatment with both pharmacokinetic and headache
score data. The phase Ila clinical trial that was performed was
designed as a randomized, double-blind, placebo-controlled,
dose-ranging, in-clinic study to evaluate the efficacy, safety,
and tolerability of subcutaneous naratriptan (14). The subcu-
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taneous doses of naratriptan were 0, 0.5, 1, 2.5, 5, and 10 mg,
and 6 mg of sumatriptan was used as a positive control. There
were 63, 60, 55, 42, 34, 34, and 47 patients in each dose group,
respectively. The PK sampling times were 0, 0.167, 0.333, 0.5,
1,1.5,2, 3,4, 6, and 8 h, whereas the pharmacodynamic vari-
able was measured at the same times except for 6 and 8 h.

Analyses

Two sets of analyses were performed. First, the integra-
tion of preclinical and phase I data for naratriptan and suma-
triptan was used to construct a model of subcutaneous
naratriptan to simulate the phase I1a clinical trial for naratrip-
tan. This required the use of phase I naratriptan pharmaco-
kinetic data, pharmacodynamic data from sumatriptan, and
preclinical data comparing the pharmacodynamics of
naratriptan and sumatriptan. In this analysis, the emphasis
was on evaluating the predictive ability of the integrated
model constructed for clinical trial simulations.

Second, the phase Ila subcutaneous naratriptan data
were modeled, and the PK/PD models were used to simulate
a phase IIb parallel clinical trial with oral naratriptan. In this
analysis, the emphasis was on evaluating the sensitivity of the
power of the study to various trial design factors (sample size
per arm, model parameter uncertainties) and on selecting op-
timal dose sizes and effect sampling schedules.

Models for Binary and Categoric Outcome Data

Longitudinal categorical data are often modeled by using
proportional odds models (7). Such models have been applied
to data from analgesic clinical trials in which pain relief/
severity recorded on a categorical scale has been used as the
pharmacodynamic measure (8,9). Proportional odds models
exploit the ordinal nature of the categories to define log odds
ratios that are then modeled. Therefore, rather than modeling
the categories themselves, a transformation of the probabili-
ties of being in a particular set of categories is modeled. The
standard proportional odds model can be defined as

. Pr(Y, = k)
osicpr(y, =0 =1oe{ Uy 2 )
k
= >0, (B, x), k=12, K~ 1, (1)
h=1

Pr(.) corresponds to a probability, Y represents the categori-
cal response data, the “logit” transformation is given by log-
it(Pr(Y)) = log[Pr(Y)/{1-Pr(Y)}], f(.,.) is the function used to
model the logit transformed probabilities (or log odds ratios),
B is the vector of model parameters, x; is the ith vector of
covariate values, K is the number of categories and 3%_, 0, is
the cut point (probability of being in first k categories for x;=
0) up to category k. For a categorical response variable with
K categories, there are K-1 “parallel” lines on the log odds
scale that represent the different sets of cumulative probabili-
ties.

Proportional odds models can be defined with both fixed
and random effects to enable the estimation of population
mean and individual parameter values as well as the corre-
sponding interindividual variance components. A common
approach to developing a proportional odds model for
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categorical pharmacodynamic data is to define a placebo/time
component and a drug/concentration effect, which have an
additive effect on the log odds scale (8).

Modeling of Naratriptan Phase I Data and Preclinical
Sumatriptan Data

A population pharmacokinetic analysis (NONMEM) of
the phase I naratriptan data was undertaken. This analysis
revealed that a two-compartment open model provided the
best fit to the data. Intravenous infusion and subcutaneous
and oral administration data were fitted simultaneously so
that population estimates of rate constants of absorption and
availability could be determined.

To allow scaling between sumatriptan and naratriptan,
published preclinical sumatriptan data were used (15,16). The
preclinical studies included SHT receptor-binding assays in
COSM6 cells that were transiently transfected with the
SHT,, gene, isolated ring preparations of dog basilar and
middle cerebral artery measuring isometric tension changes,
measurements of carotid vascular resistance in anesthetized
dogs and the effect of neurogenically mediated inflammation
in the dura of anesthetized rats. Comparisons of naratriptan
and sumatriptan results showed that naratriptan is two- to
sixfold more potent than sumatriptan, but they have approxi-
mately the same maximum effect. A conservative value of 2
was used to scale the potency parameter in the sumatriptan
pharmacodynamic model.

The model used to describe the phase II sumatriptan
pharmacodynamic data is defined in Eq. (2) (17), which is
expressed in two parts. The first line of Eq. (2) corresponds to
a baseline pain severity score of 2 observed in 55.4% of mi-
graineurs. If the patient reported a pain severity score of 3
after the baseline measurement, then this is recorded as 2
because only the decrease of pain severity is of interest. The
second line corresponds to a baseline pain severity score of 3
observed in 44.6% of migraineurs. Therefore, the first part of
the model has two cut points and the second line has three cut
points. This is defined in Eq. (2) by conditioning on the base-
line pain severity variable score,. The placebo model is given
by log(time), and the drug effect is defined as an “E,,, "-
type model where C, is the concentration of the drug at a
hypothetical effect site (18) and a schematic of the model is
given in Fig. 1. The random effects are denoted by m, (base-
line score of 2) and {; (baseline score of 3) and are normally
distributed with mean zero and variance given by w7 and g,
respectively.

A
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tlag: F Pr= ey
1+e”
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Because of the regulatory requirement of significant pain re-
lief defined earlier, only the cut point corresponding to k = 1
is necessary because this corresponds to dichotomizing the
pain severity categorical data into pain relief (categories 0 and
1) and no pain relief (categories 2 and 3). Thus, the model
becomes a binary logistic model for the dichotomization, pain
relief/no pain relief as defined in Eq. (3).

logit(Pr(Y;; = 1lscore))

05
+ + Ll[
0, + 0,4 log(time;;) 6.+ C..

¢6 _t6eij
4)7 + CLI]

+;, scorey =2

+ &, scorey =3
®)

The naratriptan PD model is obtained from the sumatriptan
PD model by scaling the affinity parameters 6, and ¢, by the
reported relative potency factor between naratriptan and su-
matriptan (15,16).

by + ds log(limei/)

Modeling of Naratriptan Phase II Data

Two approaches to pharmacokinetic analysis of the
naratriptan phase Ila data were undertaken. As a first step,
the dose-binary response data were modeled by a stepwise
logistic regression program (BMDPLR) to develop a PD
model [Fig. 1a; Eq. (4)] with the most informative covariates—
time (time), dose (dose), dose-time interaction, and type of
migraine. The “Lag” in the PD model (Fig. 1a) represents the
offset between the administration of the dose and the onset of
the effect and, therefore, does not constitute a separate com-
partment. At the next step, a population sequential PK-PD
model (Fig. 1b) was developed. The PK part of the PK/PD
model is an ordinary two-compartment first-order absorption
model. The PK and PD part are connected by a “link” model.
This is a standard modeling approach (9,14) in which the
effect is related to the concentration in an “effect” compart-
ment and its rate constant Keo is used to describe the delay of
the effect with respect to the plasma concentration. First, the

B T V,,CL v,
Q
—» Depot » Central Periph.
tlagx Kaa F
Ko Binary Effect
E-comp. Effect —
v
Pr=—
1+e”

Fig. 1. (a) PD model for naratriptan defined by Equation (4). (b) PK-PD model for naratriptan defined by Eq. (5).
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parameters of the PK model were estimated and post hoc
estimates of the individual PK model parameters were de-
rived. Then, the individual PK parameters were used to esti-
mate the parameters of the PD model. The best fit for
naratriptan was achieved by using time, concentration-effect
site (C.), a concentration-time interaction term, and type of
migraine as covariates. More complex PK-PD models (involv-
ing time delays) were abandoned because the data were in-
sufficient to support them.

logit(Pr(Z = 1)) = 0 + B time + B,dose + Bstime x dose + B type
“4)

logit(Pr(Z = 1)) = 0 + B time + B,C, + Bstime x C, + B,type
®)

Z is the dichotomized pain relief variable (1 = pain relief, 0
= no pain relief) and is shown in Fig. 1. Both models were
concurrently used in the simulations of the phase IIb oral
naratriptan trial.

Simulation for Clinical Trial Design

Clinical trial simulation (CTS) is essentially a Monte
Carlo exercise addressing the typical behavior of the system
and the departures from it. During this exercise, the influence
of the trial controllable factors (dosing and sampling sched-
ules, modes, sites, and number of subjects/arms) and uncon-
trollable factors (model parameters and structures, modeling
and design assumptions, compliance, and limitations) on the
trial outcomes is assessed. During the clinical trial design
phase, the results of the simulations were analyzed by using
various statistical techniques to determine the most favorable
controllable components of the clinical trial that will lead to
the achievement of the best outcomes of the trial with respect
to the prespecified goals.

To determine the asymptotically “correct” values (nomi-
nal values) that will serve as a basis for detecting significant
differences in the power studies, an intensive trial simulation
was undertaken, with nine doses (0, 1, 2.5, 5, 10, 15, 20, 25, and
30 mg of naratriptan). One thousand trials were simulated
with the PD model, and the statistical significance of the dif-
ference of the observed effect at 2, 4, and 6 h was assessed at
a probability level of 0.05.

Concentrating on the power of the trial to detect statis-
tically and clinically distinct doses, both the PD and the PK-
PD model were used in extensive Monte Carlo simulations,
investigating the sample size per arm, the number of subjects
in the placebo arm, the response sampling times, and some of
the modeling assumptions. Assumptions relating to absorp-
tion were of special interest because no experimental infor-
mation was available for the oral formulation (the phase I
oral administration data were obtained from a solution). In
each of the above cases, 200 trials were simulated, each trial
having 4 doses (arms)—placebo, 5, 10, and 20 mg naratriptan.

The sample size can be calculated alternatively by using
the nominal output values of the models obtained after the
initial asymptotic simulation, without doing any further simu-
lations. For this purpose, statistical tables (19) using a normal
approximation to the binomial distribution were applied.
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The list of doses and the effect sampling times can also be
determined solely on the basis of the models developed, with-
out clinical trial simulation, by using design of experiments
(DOE) techniques (20). The dose-ranging study can be rede-
fined in a dose-effect model parameter estimation study. D-
optimal experimental design theory can then be applied,
which aims to minimize the uncertainty in the dose-effect
model parameters. D-optimal designs maximize the determi-
nant of Fisher information matrix (FIM) and, therefore, mini-
mize the joint confidence regions of the parameter estimates
(20).

If the type of the migraine in both the PD (Fig. 1a) and
PK-PD (Fig. 1b) models is ignored, then the response model
has four parameters to be estimated (6, B;, B,, and B5) and
two covariates—time and dose (PD model) or effect site con-
centration (PK-PD model). Because the number of design
points of the optimal design is equal to the number of param-
eters estimated, the optimal design in our case includes two
doses and two effect sampling times because it is analogous to
a two-factor experiment, with each factor having two levels.
The additional constraints to the sets of possible doses and
effect sampling times are as follows: (i) they are positive, (ii)
a placebo dose is required, and (iii) a 2-h effect sampling time
is required by the regulator.

Taking into account the above considerations, we ex-
tended the DOE theory to the case of binary response data
with two covariates and an interaction term in the logistic
function. The standard result for a linear logistic regression
model with one covariate is to take measurements at the de-
sign points corresponding to the probabilities 0.176 and 0.824
(21). When there is a linear combination of covariates (in-
cluding interactions), the FIM can be written as shown in Eq.
(6), when the model is that given in Fig. 1a.

_exp(0+ Byt +Bod + Bati xdy) d=d
T exp(0 + Byt + Bod; + Bat; X d;)’ (= fime, 4= dose

w;=m(l —m)

n —

Ediw,-
i=1

n
Etidiw,-
i=1

n
Edfw,-
i=1

n
2 td;w,
i1

- n
Ewi
=)

n
Etiwi
i1
n
Ediwi
i1
n
Ztidiwi 2@2 dw;

L =1 =1

n
Ztiwi
=1

n
2’12 Wi
=1

n
2 Ldw;
i=1
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=1
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Subsequently, a D-optimization procedure incorporating the
simplex method, programmed in MATLAB, was imple-
mented to determine the optimal design points. To compare
alternative trial designs, which may be more logistically real-
istic, their relative efficiencies, defined as the ratio of the FIM
for the new design with respect to the optimal design to the
power of reciprocal number of parameters, were calculated.
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Table I. Pharmacokinetic Parameters Obtained from Naratriptan

Nestorov et al.

Table II. Sumatriptan Pharmacodynamic Model [Eq. (2)] Param-

Phase I Data eters (17)
Parameter Mean C.V. (%) Model
Proportional odds model Parameter Estimate (SE)
Cl (Lh™) 22.7 27.9
VvV, (L) 17.2 20.7 Model conditional on baseline score = 2
V, (L) 147 26.3 Baseline score = 0 0, —6.79 (0.58)
Q(Lh™) 154 25.5 Baseline score = 1 0, 4.73 (0.217)
ka (h™") 4.01 64.0 Effect site equilibration
F 0.96 — rate constant keo (h™) 0 0.779 (0.49)
Placebo/time effect 0,4 1.93 (0.246)
Note. The parameters Cl, V,, V, and Q were estimated from all three Maximum effect 05 3.96 (1.2)
routes of administration simultaneously, whereas ka and F are the Ce50 (ng/mL) 0, 3.51 (2.73)
estimates for subcutantous naratriptan. C.V. (%) corresponds to the Intersubject variability wnz 17.7 (2.14)
intersubject variability in terms of the coefficient of variation. Model conditional on baseline score = 3
Baseline score = 0 b, —7.74 (0.677)
Baseline score = 1 b, 3.36 (0.2)
Software Used Baseline score = 2 bs 3.9 (0.238)
Effect site equilibration rate
BMDP statistical package (procedures PL and LR) and constant keo (h™!) b, 2.04 (1.04)
NONMEM were used for the PD and PK/PD model param- Placebo/time effect bs 232 (0.234)
eter estimation. All simulations and DOE processing were Maximum effect be 9.85(23)
performed by using MATLAB software. The power calcula- Ce50 (ng/mL) o 45.9 (162)
tions and the analysis of the results were performed with Intersubject variability o 19 (2.42)

Microsoft EXCEL.
RESULTS AND DISCUSSION

Modeling of the Naratriptan Data from Phase I Studies and
Sumatriptan Preclinical Data

In the phase I data, there were 26 individuals available
for analysis with intravenous, subcutaneous, and oral admin-
istration. A two-compartment model for the disposition was
selected with a first-order absorption model for the subcuta-
neous and oral routes. The parameter values for the subcu-
taneous model are given in Table I. The parameter estimates
for the pharmacodynamic model defined in Eq. (2) are given
in Table II.

Figure 2a shows mean profiles of the naratriptan PK-PD
model [Eq. (2)] predictions with respect to time and dose,
which were based on combined naratriptan pharmacokinetic
and sumatriptan pharmacodynamic data. Figure 2b shows
that naratriptan at any particular time achieves greater pain
relief than sumatriptan because of the lower value of the
naratriptan Ce50 parameter.

We used the actual data from the phase Ila naratriptan
clinical trial to check the performance of the integrated

d.

o
w0

e oo
@ N

o ¢
~

Probability{pain relief)
=3 o
w v

o
[N

o

o

4 6 8 10
Time(hrs}

=
~N

Note. There were 553 migraineurs with moderate pain at baseline and
435 with severe pain at baseline.

model. The phase I 95% prediction interval and the phase Ila
pharmacokinetic data for naratriptan are shown in Fig. 3. It
can be seen that the phase I model underpredicts the phase
ITa data. The reason for this difference is unknown given that
in sumatriptan clinical trials, there did not seem to be any
difference between patients and healthy volunteers (22). The
phase I data come from a healthy male population, and the
phase Ila data are from a predominantly female population,
but it is assumed there is no gender difference in the phar-
macokinetics.

The predicted placebo model is in good agreement with
the observed phase Ila placebo data. Figure 4a shows the
comparison of the predicted and observed pain relief profile
at 2 h. The general trend of the predicted profile is correct but
systematically underpredicts the observed data. This could
either be due to the pharmacokinetic model underpredicting
the observed concentration-time data or the potency scaling
factor being too small.

A comparison of the power of showing a significant dif-
ference between the active groups and placebo at 2 h for the

—O—naraat2hrs
—m~- naraat6 hrs
——tr—guma at 2 hrs
—&— sumaat6hrs

Probability{pain relief)

0 2 4 6 8 10
Dose(mg)

Fig. 2. (a) Naratriptan probability of pain relief profile vs. time using the naratriptan pharmacokinetic model, sumatriptan pharmacodynamic
model, and the potency parameter scaled by a factor of 2. (b) Naratriptan and sumatriptan probability of pain relief profiles vs. dose at 2 and
6 h using the naratriptan pharmacokinetic model, sumatriptan pharmacodynamic model, and the potency parameter scaled by a factor of 2.
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Fig. 3. Phase 1 95% prediction interval (calculated pointwise) based on modeled phase
I naratriptan pharmacokinetic data compared with observed phase Ila naratriptan pharma-
cokinetic data. The data have been jittered to show the amount of data at each time point.
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Fig. 4. (A) Observed naratriptan phase Ila pharmacodynamic data and predicted PK-PD pain relief profiles at 2 h. (B) Observed and
simulated (from the PK-PD model) power at 2 h.

Table III. Parameters of the PD Model [Eq. (4)] Estimated from  Table IV. Parameters of the PK-PD Model [Eq. (5)], Estimated by
Naratriptan Dose-Response Data Using the Logistic Regression Pro- Using a Sequential Approach with NONMEM
cedure BMDPLR

PK model parameters Link & PD model parameters

Parameter Value SD

Parameter Value SD Parameter Value AD
tlag (h) 0.9 n.a.’
F (%) 60 30 tlag (h) 0.35 0.35 K., (I/h) 0.845 n.a.*
0 ~1.264 0.630 F (%) 48 n.a. 0 -0.11 0.06
Bl 0.543 0.270 Ka (l/h) 0.85 0.28 Bl 0.482 n.a.
Bz 0.042 0.021 CL (L/h) 17.9 7.57 [32 0.082 n.a.
[33 0.164 0.082 Vl (L) 23.00 20.1 B3 0.083 n.a.
B4 0.4 na. Vv, (L) 98.4 47.0 B4 0.714 n.a.

Q (L/h) 101.4 36.8

“n.a. = not applicable. "

n.a. = not applicable.

100 100
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Fig. 5. (A) Dose-effect profile of the PK-PD model, Eq. (5). (B) Time-effect profile of the PD model, Eq. (4).



1216

observed probabilities of pain severity and those predicted
by the simulation model was made. The power calcula-
tions for the simulation model were made with the same num-
ber of patients as in the actual clinical trial, which was simu-
lated 1000 times. Figure 4b shows that for doses > 2.5 mg,
there was >80% power for both the observed and predicted
data.
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Modeling of the Naratriptan Phase Ila Data

The parameters of the PD model [Eq. (4)] and PK-PD
model [Eq. (5)], identified from the phase I1a naratriptan data
are given in Tables III and IV, respectively. The parameters
related to the absorption of the oral form were chosen on the
basis of previous information with sumatriptan and literature
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Fig. 6. Results of the simulation of various clinical trial designs. (A) Influence of the sample size (number of subjects, N) per arm
(dose) on the power of the trial [PD model, Eq. (4)]. (B) Influence of the sample size (number of subjects, N) per arm (dose) on
the power of the trial [PK-PD model, Eq. (5)]. (C) Effect of the number of subjects in the placebo arm [PD model, Eq. (4)]. The
total number of subjects per trial (with 4 doses) was kept at 400. The number of placebo arm subjects was varied at 10, 25, 40,
and 160; the number of subjects on the active treatment arms is adjusted accordingly. (D) Effect of the headache relief sampling
time on the power of the trial [PD model, Eq. (4)]. (E) Effect of the PK lag-time on the power of the trial [PK-PD model, Eq. (5)].
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Table V. Sample Size Calculation [Using Statistical Tables (19)] to
Give 80% Power of Showing a 95% Significant Difference

Effect sampling times (h)

Dose comparisons 1 2¢ 4 6

5 mg vs. 0% mg 1414 82 22 23
10 mg vs. 0* mg 400 35 15 18
20 mg vs. 0* mg 130 19 12 17
10 mg vs. 5 mg 1822 280 337 860
20 mg vs. 5 mg 267 71 144 430
20 mg vs. 10 mg 700 286 1148 4693

“ Required by the regulator.

data. Because the stepwise logistic regression procedure of
BMDPLR does not provide estimates for the standard devia-
tion (SD) of the PD parameters evaluated, for the purposes of
simulation, a conservative CV of 50% has been assumed and
given in the last column of Table III. The estimates of SD in
Table IV are given by NONMEM. NONMEM seemed to
assign all the variability to the first parameter of the model-6.
This is not surprising, taking into account the low information
contents of the categorical data.

The predicted dose-effect curves for naratriptan using
the PK-PD models are shown in Figure 5a. The PD model
showed similar mean dose-effect curves.

Simulation for Clinical Trial Design

From the “nominal” mean time-effect curve of all 1000
trials, shown in Figure 5b, four dose bands, which give sig-
nificantly different effects (>10% at 0.05 significance level at
2 h) can be determined: {placebo, 1 mg, and 2.5 mg}, {5 mg},
{10 mg}, and {20 mg}. For the subsequent clinical trial simu-
lations power evaluation, the following naratriptan doses
(arms) were selected: placebo, 5 mg, 10 mg, and 20 mg.

A comparison of the power of the trial with different
sample sizes (50, 100, 150, and 200 subjects per dose) at 2 h is
shown in Figures 6a (PD model) and 6b (PK-PD model). It
can be seen that, even with the PK-PD model, which seems to
be more conservative, a sample size of 200 subjects per arm
(dose) would guarantee a power of the trial (i.e., probability
to detect a true difference) > 80%.

It is interesting to note that fewer subjects may be
needed in the placebo arm. Figure 6¢ shows the influence of
the number of subjects in the placebo arm (the total number
of subjects in all four arms was kept constant at 400) on the

-1

Determinant *
of FIM 20 %

Second Dose  °

[ ]
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power of the trial. Even with only 25 subjects in the placebo
arm (and 125 in each of the other three) 90% power is en-
sured.

The effect of the headache relief sampling time on the
power of the trial is shown in Figure 6d. Because the 2-h time
point is required by the regulator, the power of the trial will
be maximized if 4 and/or 6 h are included in the sampling
schedule.

It is known that migraine is usually accompanied by de-
layed gastric emptying, which would increase the PK lag-time
(23). The data available following oral administration to
healthy subjects did not provide information about the mag-
nitude of the PK lag. Therefore, the influence of the lag-time
on the power of the trial was explored. The results of the
simulations with lag-times of 0.5 and 1 h are shown in Figure
6e. Based on these simulations it is realistic to expect that for
most doses the proposed trial would perform well, with a
power >80%, if the PK lag-time of naratriptan is in this range.

The experimental data also show evidence of significant
variability in the bioavailability of naratriptan, the likely CV
being in the region of 40-60%. Yet, the population model
used for the PK-PD model was unable to estimate this vari-
ability, possibly assigning it to other parameters. The same
consideration applies to the model rate constant Keo, which
represents the PD delay in the system. To study the influence
of the uncertainties on the power of the trial, clinical trials
with different CVs (0, 30%, and 60%) for the parameters of
interest were simulated. In both cases, even with a CV > 30%,
the power of the clinical trial was adequate.

Table V shows the sample size calculation, using statis-
tical tables (19) with a normal approximation to the binomial
distribution. The tables give a conservative estimate of the
sample size needed, compared with the simulation results,
due to the approximation used.

Based on the above simulations, the following clinical
trial design is recommended:

1. Four or five arms with doses: placebo, 2.5 mg and/or 5
mg, 10 mg, or eventually 20 mg. Because the simulations show
that the minimum effective dose is in the range of 1 mg, the
latter dose may be included in the design, if the regulator
requires it. The simulations show that the maximum no-effect
dose is in the range of 0.5-0.75 mg.

2. At least 150 subjects per arm with possibly less for
placebo if the required power of the trial is 80%.

3. The headache relief should be monitored at 2 h, 4
and/or 6 h.

Second Effect Sampling Time

Fig. 7. Determinant of the Fisher information matrix surface for naratriptan
with the first dose fixed at 0 mg and the first sampling time fixed at 2 h.
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Table VI. Relative Efficiency of Several Possible Clinical Trial Designs for Naratriptan
Effect sampling Replicates of Number
Doses (mg) times (h) each dose” of points FIM Relative efficiency (%) Note
0%, 10 1,2° 4 16 637 100 Suboptimal design
0”, 2.5, 10, 20 20 4 2 16 333 47.8 Proposed design 1
0%, 1,25, 10 20 4 2 16 75.0 58.6 Proposed design 2
0°,1,25,5 20 4 2 16 115 65.2 Proposed design 3
07,0.1,0.25,1,25,5,7.5, 10 26,4 1 16 107 63.9 Applied design (14)

“The replicates were introduced for the purpose of the relative efficiency comparison, so that each of the compared designs had the same

number of doses (8 as in the last proposed design).
b Required by the regulator.

D-Optimal Experimental Design for Naratriptan

The FIM surface, which was computed with two fixed
points of the design—a placebo dose and an effect sampling
point at 2 h—is shown in Figure 7. It can be seen that the
maximum of the FIM is attained at early sampling times
(close to 0 h) and at a second dose of approximately 10 mg.
For the sake of the balance between logistics and optimality,
we selected as a suboptimal design the one with a second dose
of 10 mg and a second sampling time of 1 h because of the lag
in the drug being absorbed.

To make a quantitative comparison between alternative
trial designs, which are more logistically realistic, their rela-
tive efficiencies, with respect to the suboptimal design, were
calculated from the respective FIMs and are shown in Table
VI. It can be seen that, in terms of D-optimality, the proposed
designs have close or even better efficiencies than the design
that was actually used and published (14). At the same time,
the proposed designs include only half of the number of the
doses (arms) and, consequently, half of the resources needed
for the execution of the trial. The latter results show the need
for a careful balance between the design optimality and the
logistics to achieve the best trial results.

CONCLUSION

The studies described in this report were performed ret-
rospectively and did not influence the naratriptan drug devel-
opment program. The design of clinical trials for a “second-
in-line” drug with a similar mechanism of action are more
straightforward than a drug with a novel mode of action, in
that considerable insight can be gleaned from the experience
of the development of the “first-in-line” drug. Nevertheless,
modeling is a powerful vehicle for carrying information for-
ward and designing studies in an optimal fashion. Although
clinical trial simulation was not used in the design of the
naratriptan trials, modeling did play an important part in trial
development, which can be seen from the fact that the actual
phase Ila study was not very dissimilar to the “optimal” de-
sign that we ended up with. In terms of “real-time” develop-
ment, the major limitation of optimal clinical trial design is
gaining speedy access to relevant information within the time-
lines of the development program.

Clinical trial simulation is a useful tool for the quantita-
tive assessment of the influence of controllable clinical trial
variables, such as sample size, sampling schedule, and admin-
istration strategy, on the power of the trial to determine a
particular outcome. In some cases, such as the power of the
trial to determine the headache relief at 2 h in the case of

naratriptan, classical power calculations may be used. How-
ever, for complex end points, particularly those based on PK-
PD modeling, simulation is required. Simulation is the only
method that can be used to assess the influence of uncontrol-
lable variables such as parameter uncertainties and modeling
assumptions.

The number of simulations that need to be performed
increases exponentially with the number of trial factors and
levels of those factors. Thus, for three factors, such as dose,
time, and formulation, each at three levels, 27 sets of simula-
tions are required, and to obtain reliability, each of these sets
need to be run several hundred times. Optimal design theory
may help to reduce the simulation burden by defining sensi-
tive regions of the design space. Pure optimal designs tend to
be unrealistic, often involving replicated experiments. Conse-
quently, a combination of optimal design theory and simula-
tion, taking into account questions of logistics and ethics, of-
fers a very pragmatic approach to clinical trial design.

The actual resources, in software and time, to perform
the simulations and analyses reported here were not demand-
ing. However, clinical trial design should be viewed as a mod-
eling exercise that brings together diverse disciplines such as
pharmacology and statistics. Consequently, the required in-
terdisciplinary expertise is considerable. Therefore, the main
impediment to the widespread application of CTS&D in the
pharmaceutical industry is the lack of suitably trained person-
nel.

CTS may also be used as an educational tool. Thus, by
means of simulation, the purpose and conduct of a clinical
trial can be explained to the clinical trial staff. For example,
the importance of accurate timekeeping can be explored by
using a sensitivity analysis. It is also possible to assign re-
sources and develop costing on the basis of a CTS.

Clinical trial simulation and design raises many interest-
ing and fundamental research issues in the areas of optimal
design of experiments, mixed effects modeling and sensitivity
analysis. These issues are complex and will be the subject of
future research. Presently, the CTS&D tools that are avail-
able would seem to be sufficient for CTS to make a significant
contribution to the drug development process.
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